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First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family By of open sets such that for any neighborhood O, C X of
X there is a set B € By such that x € B C O,.
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We shall discuss the interplay between two generalizations of the
first-countability.
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family By of open sets such that for any neighborhood O, C X of
X there is a set B € By such that x € B C O,.

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases By
by neighborhood bases {B,},cp indexed by some partially ordered
sets P, more complicated than w.
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First-countable spaces

Definition

A topological space X is first-countable if at each point x the
space X has a countable neighborhood base, i.e., a countable
family By of open sets such that for any neighborhood O, C X of
X there is a set B € By such that x € B C O,.

We shall discuss the interplay between two generalizations of the
first-countability.

The first generalization replaces countable neighborhood bases By
by neighborhood bases {B,},cp indexed by some partially ordered
sets P, more complicated than w.

The second generalization replaces countable neighborhood bases
by countable networks with some additional properties.
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Neighborhood P-bases

Definition

Let (P, <) be a partially ordered set. A neighborhood base By at a
point x of a topological space X is called a neighborhood P-base if
B, admits a monotone enumeration By = {B,}pcp, which means
that B; C B, for any p < g in P.
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Neighborhood P-bases

Definition

Let (P, <) be a partially ordered set. A neighborhood base By at a
point x of a topological space X is called a neighborhood P-base if
B, admits a monotone enumeration By = {B,}pcp, which means
that B; C B, for any p < g in P.

A topological space X is first-countable if and only if at each point
x € X the space X has a neighborhood w-base By.
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Neighborhood P-bases

Definition

Let (P, <) be a partially ordered set. A neighborhood base By at a
point x of a topological space X is called a neighborhood P-base if
B, admits a monotone enumeration By = {B,}pcp, which means
that B; C B, for any p < g in P.

A topological space X is first-countable if and only if at each point
x € X the space X has a neighborhood w-base By.

Problem

What can be said about spaces possessing a neighborhood w”-base
at each point?
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Neighborhood P-bases

Definition

Let (P, <) be a partially ordered set. A neighborhood base By at a
point x of a topological space X is called a neighborhood P-base if
B, admits a monotone enumeration By = {B,}pcp, which means
that B; C B, for any p < g in P.

A topological space X is first-countable if and only if at each point
x € X the space X has a neighborhood w-base By.

Problem

What can be said about spaces possessing a neighborhood w”-base
at each point?

Here w¥ is the set of all functions from w to w, endowed with the
coordinatewise partial order.
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Neighborhood P-bases

Definition

Let (P, <) be a partially ordered set. A neighborhood base By at a
point x of a topological space X is called a neighborhood P-base if
B, admits a monotone enumeration By = {B,}pcp, which means
that B; C B, for any p < g in P.

A topological space X is first-countable if and only if at each point
x € X the space X has a neighborhood w-base By.

Problem

What can be said about spaces possessing a neighborhood w”-base
at each point?

Here w¥ is the set of all functions from w to w, endowed with the
coordinatewise partial order.

In literature w*“-bases are called ®-bases.
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Spaces with a neighborhood w*“-base need not be first-countable.
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Spaces with a neighborhood w*“-base need not be first-countable.

Example

The countable box-product [,¢,, X, of first-countable spaces has a
neighborhood w®“-base at each point.
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cs® and s*-networks

Definition
A family N of subsets of a topological space X is called
@ a cs*-network at a point x € X if for any neighborhood
Oy C X of x and any sequence {x,}nc, C X convergent to x
there exists a set N € A such that x € N C Oy and N
contains infinitely many points x,, n € w;
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Oy C X of x and any sequence {x,}nc, C X convergent to x
there exists a set N € A such that x € N C Oy and N
contains infinitely many points x,, n € w;
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Oy C X of x and any sequence {x,}ncw C X accumulating at
x there exists a set N € N such that xe N C Oy and N
contains infinitely many points x,, n € w.
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cs® and s*-networks

Definition
A family N of subsets of a topological space X is called
@ a cs*-network at a point x € X if for any neighborhood
Oy C X of x and any sequence {x,}nc, C X convergent to x
there exists a set N € A such that x € N C Oy and N
contains infinitely many points x,, n € w;

@ an s*-network at a point x € X if for any neighborhood
Oy C X of x and any sequence {x,}ncw C X accumulating at
x there exists a set N € N such that xe N C Oy and N
contains infinitely many points x,, n € w.

neighborhood base at x = s*-network at x = cs*-network at x
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Network generalizations of first-countability

Definition
A topological space X has

@ has countable character if at each point x € X the space X
has a countable neighborhood base By;
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Definition
A topological space X has

@ has countable character if at each point x € X the space X
has a countable neighborhood base By;

@ has countable cs*-character if at each point x € X the space
X has a countable cs*-network N,;
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has a countable neighborhood base By;
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Network generalizations of first-countability

Definition
A topological space X has

@ has countable character if at each point x € X the space X
has a countable neighborhood base By;

@ has countable cs*-character if at each point x € X the space
X has a countable cs*-network N,;

@ has countable s*-character if at each point x € X the space X
has a countable s*-network AN.

countable countable countable

first-countable < ch3racter = s*-character = cs*-character
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Network generalizations of first-countability

Definition
A topological space X has

@ has countable character if at each point x € X the space X
has a countable neighborhood base By;

@ has countable cs*-character if at each point x € X the space
X has a countable cs*-network N,;

@ has countable s*-character if at each point x € X the space X
has a countable s*-network AN.

countable countable countable

first-countable < ch3racter = s*-character = cs*-character

What is the relation of these properties to w“-bases?
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Theorem

If a topological space X has a neighborhood w“-base at a point
x € X, then X has a countable s*-network at x.
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Theorem

If a topological space X has a neighborhood w“-base at a point
x € X, then X has a countable s*-network at x.

Proof.

Let {Uq}acw~ be a neighborhood w*-base
(so Ug C U, for all a < B in w®).
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If a topological space X has a neighborhood w“-base at a point
x € X, then X has a countable s*-network at x.
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Let {Uq}acw~ be a neighborhood w*-base
(so Ug C U, for all a < B in w®).

For a subset A C w* put Ua := (,ecp Ua.
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Theorem

If a topological space X has a neighborhood w“-base at a point
x € X, then X has a countable s*-network at x.

Proof.

Let {Uqs}acw~ be a neighborhood w“-base

(so Ug C U, for all a < B in w®).

For a subset A C w* put Ua := (,ecp Ua.

Observe that w“ carries a natural Polish topology generated by the
countable base {Ta},ec,<w indexed by the set w<“ =, ., w" and
consisting of clopen sets ta = { € w* : B|n = a}.
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Theorem

If a topological space X has a neighborhood w“-base at a point
x € X, then X has a countable s*-network at x.

Proof.

Let {Uqs}acw~ be a neighborhood w“-base

(so Ug C U, for all a < B in w®).

For a subset A C w* put Ua := (,ecp Ua.

Observe that w“ carries a natural Polish topology generated by the
countable base {Ta},ec,<w indexed by the set w<“ =, ., w" and
consisting of clopen sets ta = { € w* : B|n = a}.

The following lemma completes the proof of the theorem. O

Lemma 1

The countable family { Uy }ocw<w is an s*-network at x.
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Proof of Lemma 1

Lemma 1 \

The countable family {Uyq }acw<w is an s*-network at x.

T.Banakh Generalizations of the first-countability



Proof of Lemma 1

Lemma 1
The countable family {Uyq }acw<w is an s*-network at x.

Proof.

Given a neighborhood O, C X of x and a sequence {x,}nec C X
accumulating at x, we need to find @ € w<% such that Ura C Oy
and Uy, contains infinitely many points x,, n € w.
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Proof of Lemma 1

Lemma 1
The countable family {Uyq }acw<w is an s*-network at x.

Proof.

Given a neighborhood O, C X of x and a sequence {x,}nec C X
accumulating at x, we need to find @ € w<% such that Ura C Oy
and Uy, contains infinitely many points x,, n € w.

Since {U, }acwe is a neighborhood base at x, there exists « € w*
such that U, C Ox.
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Proof of Lemma 1

Lemma 1

The countable family {Uyq }acw<w is an s*-network at x.

Proof.

Given a neighborhood O, C X of x and a sequence {x,}nec C X
accumulating at x, we need to find @ € w<% such that Ura C Oy
and Uy, contains infinitely many points x,, n € w.

Since {U, }acwe is a neighborhood base at x, there exists « € w*
such that U, C Ox.

To finish the proof of Lemma 1, it suffices to prove another 0J

Lemma 2

There exists k € w such that the set Uy, contains infinitely many
points x,, n € w.
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Proof of Lemma 2

Lemma 2

There exists k € w such that the set Uy, == nBGTaIk Us contains
infinitely many points x,, n € w.
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Proof of Lemma 2

Lemma 2

There exists k € w such that the set Uy, == ﬂﬁemlk Us contains
infinitely many points x,, n € w.

Proof.

Without loss of generality we can assume that x, # x for all n € w.
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Proof of Lemma 2

Lemma 2

There exists k € w such that the set Uy, == ﬂﬁemlk Us contains
infinitely many points x,, n € w.

Proof.

Without loss of generality we can assume that x, # x for all n € w.
For every neighborhood U C X of x consider the set
FlU)={new:x,€ U} Cw.
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Proof of Lemma 2

Lemma 2

There exists k € w such that the set Uy, == ﬂﬁemlk Us contains
infinitely many points x,, n € w.

Proof.

Without loss of generality we can assume that x, # x for all n € w.
For every neighborhood U C X of x consider the set
F(U)={n€w:x,€ U} Cw. It follows that

F :={F(U) : U is a neighborhood of x}

is a free filter on w and the family {F(U,)}acw~ is @ monotone
base for F.

v
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Proof of Lemma 2

Lemma 2

There exists k € w such that the set Uy, == ﬂﬁemlk Us contains
infinitely many points x,, n € w.

Proof.

Without loss of generality we can assume that x, # x for all n € w.
For every neighborhood U C X of x consider the set
F(U)={n€w:x,€ U} Cw. It follows that

F :={F(U) : U is a neighborhood of x}

is a free filter on w and the family {F(U,)}acw~ is @ monotone
base for F.

We claim that the filter F is analytic (as a subspace of the
power-set P(w), endowed with the natural compact metrizable
topology). O

v
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Analytic spaces

A topological space X is called analytic if X is continuous image of

wv.
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Analytic spaces

A topological space X is called analytic if X is continuous image of

wv.

Known Fact

A metrizable separable space X is analytic if and only if X has a
compact resolution, which is a family (K )acw= of compact subsets
of X such that X = Ko and Ko, C Kg for all o < B in w®.

acw?
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Continuation of the proof of Lemma 2

We apply this characterization to prove the analycity of the filter
F on w generated by the base consisting of the sets
F(Uy) ={new:x,€ Uy}, a €w”.
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Continuation of the proof of Lemma 2

We apply this characterization to prove the analycity of the filter
F on w generated by the base consisting of the sets

F(Uy) ={new:x,€ Uy}, a €w”.

Observe that for every a € w® the set

1TF(U,) :={F Cw: F(Uy) C F} is a compact subset of F and
moreover F = |J, e TF(Us), where 1F(Uy) C TF(Ug) for any
a<fin w?.
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Continuation of the proof of Lemma 2

We apply this characterization to prove the analycity of the filter
F on w generated by the base consisting of the sets

F(Uy) ={new:x,€ Uy}, a €w”.

Observe that for every a € w® the set

1TF(U,) :={F Cw: F(Uy) C F} is a compact subset of F and
moreover F = |J, e TF(Us), where 1F(Uy) C TF(Ug) for any
a<finw”.

So, (TF(Ua))aeww is a compact resolution of the subspace

F C P(w) and hence the filter F is analytic and meager.
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Continuation of the proof of Lemma 2

We apply this characterization to prove the analycity of the filter
F on w generated by the base consisting of the sets

F(Uy) ={new:x,€ Uy}, a €w”.

Observe that for every a € w® the set

1TF(U,) :={F Cw: F(Uy) C F} is a compact subset of F and
moreover F = |J, e TF(Us), where 1F(Uy) C TF(Ug) for any
a<finw”.

So, (TF(Ua))aeww is a compact resolution of the subspace

F C P(w) and hence the filter F is analytic and meager.

By the Talagrand's characterization of meager filters on w, there
exists a finite-to-one map ¢ : w — w such that for every F € F the
image ¢(F) has finite complement in w.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.

Choose an increasing number sequence (yk)kew € w* such that
o Y yk) N I =0 for all k € w.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.

Choose an increasing number sequence (yk)kew € w* such that
o Y yk) N I =0 for all k € w.

For every k € w and n € p~1(k) we get x, ¢ Utqji and hence
Xn ¢ Ug,, for some By, € w* with Bnlk = alk.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.
Choose an increasing number sequence (yx)keo, € w* such that

0 Hyk) Nk = 0 for all k € w.

For every k € w and n € p~1(k) we get x, ¢ Utqji and hence

Xn ¢ U, for some By , € w* with Bnlk = alk. Then for

Bk = max{Bkn: n€ p t(k)} and all n € o~ (k) we get x, ¢ Us, .
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.
Choose an increasing number sequence (yx)keo, € w* such that

0 Hyk) Nk = 0 for all k € w.

For every k € w and n € p~1(k) we get x, ¢ Utqji and hence

Xn ¢ U, for some By , € w* with Bnlk = alk. Then for

Bk = max{Bkn: n€ p t(k)} and all n € o~ (k) we get x, ¢ Us, .
Now consider the function 8 € w® defined by

B(i) = max{Bk(i) : k < i+ 1} for i € w.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.
Choose an increasing number sequence (yx)keo, € w* such that

0 Hyk) Nk = 0 for all k € w.

For every k € w and n € p~1(k) we get x, ¢ Utqji and hence

Xn ¢ U, for some By , € w* with Bnlk = alk. Then for

Bk = max{Bkn: n€ p t(k)} and all n € o~ (k) we get x, ¢ Us, .
Now consider the function 8 € w® defined by

B(i) = max{Bk(i) : k <i+ 1} for i € w. It can be shown that

B > Bk and hence Ug C Ug, for all k € w.
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Continuation of the proof of Lemma 2

We need to prove that for some k € w the set U;qx contains
infinitely many points x,, n € w. To derive a contradiction, assume
that for every k € w the set Jx = {n € w : x, € Upq i} is finite.
Choose an increasing number sequence (yx)keo, € w* such that

0 Hyk) Nk = 0 for all k € w.

For every k € w and n € p~1(k) we get x, ¢ Utqji and hence

Xn ¢ U, for some By , € w* with Bnlk = alk. Then for

Bk = max{Bkn: n€ p t(k)} and all n € o~ (k) we get x, ¢ Us, .
Now consider the function 8 € w® defined by

B(i) = max{Bk(i) : k <i+ 1} for i € w. It can be shown that

B > Bk and hence Ug C Ug, for all k € w.

Then for any n € [Jye, ¢ (k) we get x, ¢ Us and hence

Ukew ¢ (k) is disjoint with the set F(Ug), which implies that
©(F(Ug)) is disjoint with the set {y}ke. and cannot be cofinite
in w. But this contradicts the choice of .
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Thus we have proved

Theorem
If a topological space X has a neighborhood w“-base at a point
x € X, then X has a countable s*-network at x.
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Thus we have proved

Theorem

If a topological space X has a neighborhood w*-base at a point
x € X, then X has a countable s*-network at x.

This theorem has many nice corollaries, for example:

Corollary (generalizing famous Arhangel’ski theorem)

Each countably tight Hausdorff Lindelof space X with a
neighborhood w*-base at each point has cardinality | X| < ¢.
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Thus we have proved

If a topological space X has a neighborhood w*-base at a point

Theorem
x € X, then X has a countable s*-network at x. |

This theorem has many nice corollaries, for example:

Corollary (generalizing famous Arhangel’ski theorem)

Each countably tight Hausdorff Lindelof space X with a
neighborhood w*-base at each point has cardinality | X| < ¢.

This corollary is a consequence of Main Theorem and

Theorem

Each countably tight Hausdorff space X with
countable s*-character has cardinality |X| < 2L(X)
where L(X) is the Lindelof number of X.
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Dékuji!
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